
1. What is data structure?

A data structure is a way of organizing and storing data in a computer's memory or 
storage system. It provides a systematic approach to managing and manipulating data 
efficiently. Examples of data structures include arrays, linked lists, stacks, queues, trees, 
and graphs.

2. What is an array?

An array is a data structure that stores a fixed-size sequence of elements of the same 
type. It provides random access to its elements using an index. Arrays are commonly 
used for storing and manipulating collections of data, such as a list of integers or 
characters.

3. What is a linked list?

A linked list is a data structure in which each element, called a node, contains a value 
and a reference to the next node in the sequence. Unlike arrays, linked lists do not require 
contiguous memory allocation, allowing for efficient insertion and deletion operations. 
However, accessing elements in a linked list requires traversing the list from the 
beginning.

4. What is a stack?

A stack is an abstract data type that follows the Last-In-First-Out (LIFO) principle. It 
supports two main operations: push (inserting an element onto the top of the stack) and 
pop (removing the topmost element from the stack). Stacks are often used for 
managing function calls, expression evaluation, and undo mechanisms.

5. What is a queue?

A queue is an abstract data type that follows the First-In-First-Out (FIFO) principle. It 
supports two primary operations: enqueue (adding an element to the end of the queue) 
and dequeue (removing the element at the front of the queue). Queues are commonly 
used in scenarios where data needs to be processed in the order it arrives, such as 
scheduling tasks or handling requests.

6. What is a tree?

100 Data Structure
Interview QnA 

Yadneyesh (Curious Coder)
CodWithCurious.com

Made By:



A tree is a hierarchical data structure consisting of nodes connected by edges. It has a 
root node at the top and child nodes below it, forming a branching structure. Trees are 
used to represent hierarchical relationships, such as file systems, organization structures, 
and decision-making processes.

7. What is a graph?

A graph is a non-linear data structure consisting of nodes (vertices) and edges that 
connect them. It is a powerful tool for representing relationships between objects. Graphs 
can be directed (edges have a specific direction) or undirected (edges have no 
direction). They are widely used in network analysis, social networks, and pathfinding 
algorithms.

8. What is the difference between an array and a linked list?

The main difference between an array and a linked list is their underlying structure and 
the operations they support. Arrays have contiguous memory allocation and provide 
direct access to elements using an index, allowing for fast random access. Linked lists, on 
the other hand, use nodes with references to the next element, providing efficient 
insertion and deletion at any position but slower access time.

9. What is the difference between a stack and a queue?

The key difference between a stack and a queue lies in their order of operations. A stack 
follows the Last-In-First-Out (LIFO) principle, where the last element inserted is the first 
one to be removed. In contrast, a queue adheres to the First-In-First-Out (FIFO) principle, 
where the first element inserted is the first one to be removed. Stacks are like a pile of 
plates, while queues resemble a line of people waiting.

10. What is the difference between a tree and a graph?

While both trees and graphs are hierarchical structures, the main difference lies in their 
level of organization. A tree is a type of graph that does not contain cycles, meaning 
there are no loops or circular dependencies among the nodes. In contrast, a general 
graph can have cycles and arbitrary connections between nodes, allowing for more 
complex relationships.

11. What is the difference between breadth-first search (BFS) and depth-first search 
(DFS)?

Breadth-first search (BFS) and depth-first search (DFS) are graph traversal algorithms 
that visit all the nodes in a graph. The key difference is the order in which they explore the 
nodes. BFS visits all the neighbors of a node before moving to the next level, resembling a 
wave expanding from the starting point. DFS explores as far as possible along each 
branch before backtracking, going deeper into the graph.

12. What is the time complexity of inserting an element into an array?



The time complexity of inserting an element into an array depends on the position where 
the insertion needs to occur. If the element is inserted at the beginning, all existing 
elements must be shifted to make room, resulting in a time complexity of O(n), where n 
is the number of elements in the array. If the insertion happens at the end, the time 
complexity is constant, O(1).

13. What is the time complexity of searching for an element in an array?

The time complexity of searching for an element in an array depends on the search 
algorithm used. The simplest approach is linear search, which has a time complexity of 
O(n), where n is the number of elements in the array. Binary search, on the other hand, 
has a time complexity of O(log n) if the array is sorted, as it repeatedly divides the 
search space in half.

14. What is the time complexity of inserting an element into a linked list?

Inserting an element into a linked list typically involves updating the references of the 
adjacent nodes. If the insertion happens at the beginning or end of the linked list, the 
time complexity is constant, O(1), as it requires updating only a few references. However, 
inserting in the middle of a linked list requires traversing it until the desired position, 
resulting in a time complexity of O(n), where n is the number of elements in the linked 
list.

15. What is the time complexity of searching for an element in a linked list?

The time complexity of searching for an element in a linked list is O(n), where n is the 
number of elements in the linked list. Since linked lists do not provide random access, we 
need to traverse the list from the beginning until we find the desired element or reach the 
end. This linear traversal makes the search time proportional to the size of the linked list.

16. What is a binary search tree (BST)?

A binary search tree (BST) is a binary tree data structure in which each node has a 
key/value and follows a specific property: the key of any node in the left subtree is less 
than the key of the node itself, and the key of any node in the right subtree is greater. This 
property allows for efficient searching, insertion, and deletion operations, with an 
average time complexity of O(log n), where n is the number of nodes in the tree.

17. What is a heap data structure?

A heap is a complete binary tree data structure that satisfies the heap property: for a 
max heap, the key of each node is greater than or equal to the keys of its children; for a 
min heap, the key of each node is smaller than or equal to the keys of its children. Heaps 
are commonly used to implement priority queues and efficient sorting algorithms like 
heap sort.

18. What is a hash table?



A hash table, also known as a hash map, is a data structure that uses a hash function to 
map keys to values. It provides efficient insertion, deletion, and retrieval operations with 
an average time complexity of O(1). Hash tables are widely used for fast data lookup, 
such as implementing dictionaries or symbol tables.

19. What is the difference between an array and a hash table?

Arrays and hash tables differ in their underlying structure and the operations they 
support. Arrays provide direct access to elements using an index, allowing for fast 
random access. In contrast, hash tables use a hash function to map keys to values, 
providing efficient insertion, deletion, and retrieval operations, but without direct index-
based access.

20. What is the time complexity of inserting an element into a hash table?

The time complexity of inserting an element into a hash table is typically O(1), assuming 
a well-designed hash function and an evenly distributed hash table. The hash function 
calculates the index where the element will be stored, and the element is inserted at that 
position. In the best case, insertion can be constant time. However, in the worst case, 
when collisions occur and chaining is used to resolve them, the time complexity can be 
O(n), where n is the number of elements in the hash table.

21. What is the time complexity of searching for an element in a hash table?

The time complexity of searching for an element in a hash table is typically O(1), 
assuming a well-designed hash function and an evenly distributed hash table. The hash 
function calculates the index of the element, and a lookup is performed at that position. 
In the best case, the element is found immediately. However, in the worst case, when 
collisions occur and chaining is used, the time complexity can be O(n), where n is the 
number of elements in the hash table.

22. What is a trie data structure?

A trie, also known as a prefix tree, is a tree-based data structure used to efficiently store 
and search for strings. Each node in the trie represents a common prefix of multiple 
strings, and the edges represent individual characters. Tries are particularly useful for 
tasks such as autocomplete, spell checking, and IP routing.

23. What is the time complexity of inserting a string into a trie?

The time complexity of inserting a string into a trie is proportional to the length of the 
string, denoted as O(m), where m is the length of the string. During insertion, the 
algorithm traverses the trie, creating new nodes as necessary until the entire string is 
inserted. The efficiency of tries lies in their ability to provide fast prefix-based searches.

24. What is the time complexity of searching for a string in a trie?

The time complexity of searching for a string in a trie is proportional to the length of the 
string, denoted as O(m), where m is the length of the string. The algorithm follows the 



characters of the string, traversing the trie from the root to the corresponding leaf node. If 
the string exists in the trie, the search operation terminates at the leaf node. Otherwise, it 
reaches a point where the string is not present.

25. What is dynamic programming?

Dynamic programming is a problem-solving technique that breaks down complex 
problems into smaller overlapping subproblems, solving each subproblem only once 
and storing the results for future use. It is often used when the subproblems exhibit 
optimal substructure, meaning the optimal solution to the main problem can be 
constructed from optimal solutions to its subproblems. Dynamic programming can 
significantly improve the efficiency of algorithms by avoiding redundant computations.

26. What is memoization in dynamic programming?

Memoization is a technique used in dynamic programming to optimize recursive 
algorithms by storing the results of expensive function calls and returning the cached 
result when the same inputs occur again. It avoids redundant computations and 
improves the overall efficiency of the algorithm. Memoization is commonly implemented 
using arrays, hash tables, or data structures like memoization tables.

27. What is a greedy algorithm?

A greedy algorithm is an algorithmic paradigm that follows the problem-solving 
heuristic of making the locally optimal choice at each stage, with the hope of finding a 
global optimum. Greedy algorithms make decisions based on the current best option 
without considering the overall consequences. While they are relatively simple to design 
and efficient, greedy algorithms do not guarantee the optimal solution for all problems.

28. What is a divide and conquer algorithm?

A divide and conquer algorithm breaks down a problem into smaller, more manageable 
subproblems, solves them independently, and combines the solutions to obtain the final 
solution. It follows the recursive structure of dividing the problem, solving the 
subproblems, and merging the results. Divide and conquer algorithms are often used in 
sorting (e.g., merge sort, quicksort) and searching (e.g., binary search) problems.

29. What is a dynamic array?

A dynamic array, also known as a resizable array, is a data structure that provides the 
flexibility of resizing the array during runtime. It starts with a fixed initial capacity and 
dynamically allocates more memory when needed. Dynamic arrays combine the 
benefits of arrays, such as constant-time random access, with the ability to grow or 
shrink the array as necessary.

30. What is the time complexity of appending an element to a dynamic array?

The time complexity of appending an element to a dynamic array depends on the 
implementation. In most cases, appending an element to the end of the array requires 
constant time on average, denoted as O(1). However, in scenarios where the array needs 



to be resized due to insufficient capacity, the time complexity can be O(n), where n is the 
number of elements in the array, as all elements may need to be copied to the new 
memory location.

31. What is the time complexity of accessing an element in a dynamic array?

The time complexity of accessing an element in a dynamic array is constant, denoted as 
O(1). Since dynamic arrays use contiguous memory allocation, elements can be 
accessed directly using an index. This provides fast random access, similar to traditional 
arrays.

32. What is the time complexity of removing an element from a dynamic array?

The time complexity of removing an element from a dynamic array depends on the 
position of the element. If the element is removed from the end of the array, the time 
complexity is constant, O(1), as it only requires updating the array's size. However, if the 
element is removed from the middle, all subsequent elements need to be shifted, 
resulting in a time complexity of O(n), where n is the number of elements in the array.

33. What is a red-black tree?

A red-black tree is a self-balancing binary search tree that maintains balanced 
properties, ensuring efficient insertion, deletion, and search operations. It achieves 
balance by coloring each node either red or black and applying specific rotation and 
color-flipping operations during insertion and deletion. Red-black trees are used in 
various applications, including C++ STL's set and map implementations.

34. What is the time complexity of inserting an element into a red-black tree?

The time complexity of inserting an element into a red-black tree is O(log n), where n is 
the number of nodes in the tree. The balancing operations performed during insertion 
take logarithmic time because the tree height remains balanced, thanks to the red-
black tree properties. The self-balancing nature ensures that the worst-case height of 
the tree remains proportional to log n.

35. What is the time complexity of searching for an element in a red-black tree?

The time complexity of searching for an element in a red-black tree is O(log n), where n 
is the number of nodes in the tree. Similar to other balanced binary search trees, the 
height of the red-black tree remains balanced due to its properties. As a result, the 
search operation efficiently narrows down the search space, leading to a logarithmic 
time complexity.

36. What is a B-tree?

A B-tree is a self-balancing tree data structure designed to efficiently store and retrieve 
large amounts of data on disk or other secondary storage devices. It allows for efficient 
operations by minimizing the number of disk accesses required. B-trees are commonly 
used in databases and file systems, where data is organized in blocks or pages.



37. What is the time complexity of inserting an element into a B-tree?

The time complexity of inserting an element into a B-tree depends on the height of the 
tree. For a B-tree with a balanced structure, the height is logarithmic, resulting in an 
average time complexity of O(log n), where n is the number of elements in the tree. The 
balancing properties of B-trees ensure that the height remains balanced, leading to 
efficient insertions.

38. What is the time complexity of searching for an element in a B-tree?

The time complexity of searching for an element in a B-tree is similar to the insertion 
complexity and depends on the height of the tree. For a balanced B-tree, the height is 
logarithmic, resulting in an average time complexity of O(log n), where n is the number 
of elements in the tree. The balanced structure ensures efficient search operations by 
narrowing down the search space.

39. What is a priority queue?

A priority queue is an abstract data type that maintains a set of elements, each 
associated with a priority. It allows for efficient retrieval of the element with the highest 
(or lowest) priority. Priority queues are commonly implemented using binary heaps or 
balanced binary search trees. They find applications in scheduling, Dijkstra's algorithm, 
and Huffman coding, among others.

40. What is the difference between a priority queue and a regular queue?

The main difference between a priority queue and a regular queue lies in the ordering of 
elements. In a regular queue, elements are stored and retrieved in a First-In-First-Out 
(FIFO) order. However, in a priority queue, elements are associated with priorities and 
retrieved based on the priority order. The element with the highest (or lowest) priority is 
dequeued first.

41. What is the time complexity of inserting an element into a priority queue 
implemented with a binary heap?

The time complexity of inserting an element into a priority queue implemented with a 
binary heap is O(log n), where n is the number of elements in the heap. During insertion, 
the element is appended to the end of the heap, and then it "bubbles up" by swapping 
with its parent until the heap property is restored. The maximum number of swaps 
required is proportional to the height of the heap, which is logarithmic.

42. What is the time complexity of accessing the maximum element in a priority queue 
implemented with a binary heap?

The time complexity of accessing the maximum element in a priority queue 
implemented with a binary heap is O(1). The maximum element is always located at the 
root of the heap, providing direct access without the need for traversal or comparison 
with other elements.



43. What is the time complexity of removing the maximum element from a priority 
queue implemented with a binary heap?

The time complexity of removing the maximum element from a priority queue 
implemented with a binary heap is O(log n), where n is the number of elements in the 
heap. The removal process involves swapping the root with the last element, "bubbling 
down" the new root to its proper position, and restoring the heap property. The number of 
swaps required is proportional to the height of the heap, which is logarithmic.

44. What is the time complexity of sorting elements using heap sort?

The time complexity of sorting elements using heap sort is O(n log n), where n is the 
number of elements in the input array. Heap sort involves building a binary heap from 
the array (O(n)), repeatedly removing the maximum element from the heap (O(log n)) 
and placing it in the sorted portion of the array. The overall time complexity is dominated 
by the O(log n) removal operation, performed n times.

45. What is a graph traversal algorithm?

A graph traversal algorithm explores all the nodes or vertices of a graph in a systematic 
manner. It enables visiting each node and performing necessary operations, such as 
marking the node as visited or collecting information. Common graph traversal 
algorithms include depth-first search (DFS) and breadth-first search (BFS).

46. What is the difference between BFS and DFS graph traversal algorithms?

The main difference between breadth-first search (BFS) and depth-first search (DFS) lies 
in the order in which they explore nodes in a graph. BFS visits all the neighbors of a node 
before moving to the next level, resembling a wave expanding from the starting point. 
DFS explores as far as possible along each branch before backtracking, going deeper 
into the graph. As a result, BFS typically finds the shortest path, while DFS explores paths 
deeply.

47. What is the time complexity of BFS in a graph?

The time complexity of breadth-first search (BFS) in a graph is O(V + E), where V is the 
number of vertices (nodes) and E is the number of edges in the graph. BFS visits each 
vertex once and examines all its adjacent edges, resulting in a linear time complexity.

48. What is the time complexity of DFS in a graph?

The time complexity of depth-first search (DFS) in a graph is O(V + E), where V is the 
number of vertices (nodes) and E is the number of edges in the graph. DFS visits each 
vertex once and examines all its adjacent edges recursively, resulting in a linear time 
complexity.

49. What is a topological sort?

A topological sort is an ordering of the vertices in a directed acyclic graph (DAG) such 
that for every directed edge (u, v), vertex u comes before vertex v in the ordering. 



Topological sorting is commonly used in tasks such as task scheduling, dependency 
resolution, and determining the order of events.

50. What is the time complexity of topological sort in a directed acyclic graph?

The time complexity of topological sort in a directed acyclic graph (DAG) is O(V + E), 
where V is the number of vertices (nodes) and E is the number of edges in the graph. The 
algorithm performs a depth-first search (DFS) with some modifications, resulting in a 
linear time complexity.

51. What is a linked list?

A linked list is a linear data structure consisting of nodes, where each node contains a 
value and a reference (or pointer) to the next node in the sequence. Linked lists allow for 
efficient insertion and deletion at any position, but accessing elements requires 
traversing the list from the beginning.

52. What is the time complexity of inserting an element at the beginning of a linked list?

The time complexity of inserting an element at the beginning of a linked list is O(1). Since 
the new element becomes the head of the list, it simply requires updating the head 
pointer to point to the new node.

53. What is the time complexity of inserting an element at the end of a linked list?

The time complexity of inserting an element at the end of a linked list is O(n), where n is 
the number of nodes in the list. To insert at the end, we need to traverse the entire list to 
reach the last node and then update its reference to point to the new node.

54. What is the time complexity of searching for an element in a linked list?

The time complexity of searching for an element in a linked list is O(n), where n is the 
number of nodes in the list. In the worst case, we may need to traverse the entire list to 
find the desired element.

55. What is the time complexity of removing an element from a linked list?

The time complexity of removing an element from a linked list depends on the position of 
the element. If the element is at the beginning, the removal operation can be done in 
O(1) time by updating the head pointer. If the element is in the middle or at the end, it 
requires traversing the list to find the element (O(n)) and updating the references 
accordingly.

56. What is a stack?

A stack is an abstract data type that follows the Last-In-First-Out (LIFO) principle. It can 
be visualized as a vertical stack of elements, where insertion and deletion occur only at 
one end, known as the top. The last element inserted is the first one to be removed.

57. What is the time complexity of inserting an element into a stack?



The time complexity of inserting (pushing) an element into a stack is O(1). It involves 
adding the element to the top of the stack by updating the top pointer.

58. What is the time complexity of removing an element from a stack?

The time complexity of removing (popping) an element from a stack is O(1). It involves 
removing the element from the top of the stack by updating the top pointer.

59. What is the time complexity of accessing the top element of a stack?

The time complexity of accessing (peeking) the top element of a stack is O(1). It involves 
retrieving the element from the top of the stack without modifying the stack itself.

60. What is a queue?

A queue is an abstract data type that follows the First-In-First-Out (FIFO) principle. It can 
be visualized as a horizontal line of elements, where insertion occurs at one end (rear) 
and removal occurs at the other end (front). The first element inserted is the first one to 
be removed.

61. What is the time complexity of inserting an element into a queue?

The time complexity of inserting (enqueueing) an element into a queue is O(1). It involves 
adding the element to the rear of the queue.

62. What is the time complexity of removing an element from a queue?

The time complexity of removing (dequeueing) an element from a queue is O(1). It 
involves removing the element from the front of the queue.

63. What is the time complexity of accessing the front element of a queue?

The time complexity of accessing (peeking) the front element of a queue is O(1). It 
involves retrieving the element from the front of the queue without modifying the queue 
itself.

64. What is a hash table?

A hash table is a data structure that implements an associative array abstract data 
type. It uses a hash function to map keys to array indices, allowing for efficient insertion, 
deletion, and retrieval of key-value pairs. Hash tables provide constant-time average 
case complexity for these operations.

65. What is a hash function?

A hash function is a function that takes an input (such as a key) and returns a fixed-size 
numerical value, known as a hash code or hash value. The hash function is designed to 
evenly distribute the hash codes across the available indices of the hash table, 
minimizing collisions and maximizing efficiency.

66. What is collision handling in a hash table?



Collision handling in a hash table refers to the process of dealing with situations where 
two or more keys result in the same hash code, leading to a collision. Common collision 
handling techniques include chaining (using linked lists or arrays to store multiple values 
at the same index) and open addressing (probing for alternative locations when a 
collision occurs).

67. What is the time complexity of inserting an element into a hash table?

The time complexity of inserting an element into a hash table is typically O(1) on 
average. However, in the worst case, when collisions are frequent and extensive chaining 
or probing is required, the time complexity can increase to O(n), where n is the number 
of elements in the hash table.

68. What is the time complexity of retrieving an element from a hash table?

The time complexity of retrieving an element from a hash table is typically O(1) on 
average. However, in the worst case, when collisions are frequent and extensive chaining 
or probing is involved, the time complexity can increase to O(n), where n is the number 
of elements in the hash table.

69. What is the time complexity of removing an element from a hash table?

The time complexity of removing an element from a hash table is typically O(1) on 
average. However, in the worst case, when collisions are frequent and extensive chaining 
or probing is required, the time complexity can increase to O(n), where n is the number 
of elements in the hash table.

70. What is a binary search tree (BST)?

A binary search tree (BST) is a binary tree data structure in which each node has a key 
greater than all the keys in its left subtree and smaller than all the keys in its right 
subtree. This property enables efficient searching, insertion, and deletion operations. In-
order traversal of a BST yields a sorted sequence of keys.

71. What is the time complexity of searching for an element in a binary search tree 
(BST)?

The time complexity of searching for an element in a binary search tree (BST) is O(h), 
where h is the height of the tree. In a balanced BST, the height is logarithmic (h = log n, 
where n is the number of nodes), resulting in an average case time complexity of O(log 
n). However, in the worst case, when the tree is skewed and resembles a linked list, the 
height is linear (h = n), leading to a time complexity of O(n).

72. What is the time complexity of inserting an element into a binary search tree (BST)?

The time complexity of inserting an element into a binary search tree (BST) is O(h), 
where h is the height of the tree. In a balanced BST, the height is logarithmic (h = log n, 
where n is the number of nodes), resulting in an average case time complexity of O(log 



n). However, in the worst case, when the tree is skewed and resembles a linked list, the 
height is linear (h = n), leading to a time complexity of O(n).

73. What is the time complexity of removing an element from a binary search tree (BST)?

The time complexity of removing an element from a binary search tree (BST) is O(h), 
where h is the height of the tree. In a balanced BST, the height is logarithmic (h = log n, 
where n is the number of nodes), resulting in an average case time complexity of O(log 
n). However, in the worst case, when the tree is skewed and resembles a linked list, the 
height is linear (h = n), leading to a time complexity of O(n).

74. What is a self-balancing binary search tree?

A self-balancing binary search tree is a binary search tree that automatically maintains 
a balanced structure during insertions and deletions. It achieves this balance by 
performing rotations or other operations to ensure that the height of the tree remains 
logarithmic, optimizing the time complexity of search, insert, and delete operations.

75. What is an AVL tree?

An AVL tree is a self-balancing binary search tree named after its inventors, Adelson-
Velsky and Landis. It maintains the balance factor (the height difference between left 
and right subtrees) of each node, ensuring that it is always in the range of -1, 0, or 1. AVL 
trees perform rotations to maintain balance and achieve efficient operations with a 
worst-case time complexity of O(log n).

76. What is a red-black tree?

A red-black tree is a self-balancing binary search tree with an additional color attribute 
for each node, either red or black. The color properties and rotations maintain a balance 
between the left and right subtrees, ensuring that the longest path is no more than twice 
the length of the shortest path. Red-black trees offer efficient operations with a worst-
case time complexity of O(log n).

77. What is a heap?

A heap is a complete binary tree data structure that satisfies the heap property. In a max 
heap, for every node, the value of the node is greater than or equal to the values of its 
children. In a min heap, the value of each node is smaller than or equal to the values of 
its children. Heaps are commonly used to implement priority queues and heap sort.

78. What is the time complexity of finding the maximum (or minimum) element in a 
heap?

The time complexity of finding the maximum (or minimum) element in a heap is O(1). 
The maximum (or minimum) element is always located at the root of the heap, allowing 
for direct access without the need for traversal or comparison with other elements.

79. What is the time complexity of inserting an element into a heap?



The time complexity of inserting an element into a heap is O(log n), where n is the 
number of elements in the heap. The insertion process involves adding the element to 
the next available position in the heap and "bubbling up" by swapping it with its parent 
until the heap property is satisfied. The number of swaps required is proportional to the 
height of the heap, which is logarithmic.

80. What is the time complexity of removing the maximum (or minimum) element from 
a heap?

The time complexity of removing the maximum (or minimum) element from a heap is 
O(log n), where n is the number of elements in the heap. The removal process involves 
swapping the root with the last element, removing the last element, and "bubbling down" 
the new root by swapping it with its larger (or smaller) child until the heap property is 
satisfied. The number of swaps required is proportional to the height of the heap, which is 
logarithmic.

81. What is a trie?

A trie, also known as a prefix tree, is a tree-based data structure commonly used for 
efficient string searching and retrieval operations. It stores a set of strings, where each 
node represents a prefix or a complete string. Trie nodes typically have multiple child 
pointers, each associated with a character. Tries are useful in applications such as 
autocomplete, spell-checking, and IP routing.

82. What is the time complexity of searching for a string in a trie?

The time complexity of searching for a string in a trie is O(m), where m is the length of 
the string. The search process involves traversing the trie from the root to the leaf node 
corresponding to the last character of the string. The number of comparisons required is 
proportional to the length of the string.

83. What is the time complexity of inserting a string into a trie?

The time complexity of inserting a string into a trie is O(m), where m is the length of the 
string. The insertion process involves traversing the trie based on the characters of the 
string and creating new nodes as necessary. The number of operations is proportional to 
the length of the string.

84. What is a graph?

A graph is a non-linear data structure consisting of a set of vertices (nodes) connected 
by edges. Graphs can be used to represent various real-world relationships or networks. 
They can be directed (edges have a specific direction) or undirected (edges have no 
direction). Graphs are widely used in areas such as social networks, transportation 
networks, and computer networks.

85. What is a weighted graph?



A weighted graph is a graph in which each edge is assigned a weight or cost. The weight 
represents some value associated with the edge, such as the distance between two 
vertices or the cost of traversing the edge. Weighted graphs are used to model scenarios 
where edges have different significance or cost.

86. What is a directed acyclic graph (DAG)?

A directed acyclic graph (DAG) is a directed graph that does not contain any directed 
cycles. In other words, it is impossible to traverse from a vertex and return back to it by 
following the directions of the edges. DAGs are used in various applications, including 
task scheduling, dependency resolution, and representing precedence relationships.

87. What is a minimum spanning tree (MST)?

A minimum spanning tree (MST) is a subset of the edges of a weighted undirected graph 
that connects all the vertices with the minimum possible total edge weight. MSTs are 
used to find the most cost-effective way to connect a set of nodes. Common algorithms 
for finding MSTs include Prim's algorithm and Kruskal's algorithm.

88. What is Dijkstra's algorithm?

Dijkstra's algorithm is a graph traversal algorithm used to find the shortest path between 
a starting vertex and all other vertices in a weighted graph with non-negative edge 
weights. It maintains a priority queue to continuously select the vertex with the smallest 
distance from the starting vertex and updates the distances of adjacent vertices 
accordingly. Dijkstra's algorithm guarantees the shortest paths when all edge weights 
are non-negative.

89. What is the time complexity of Dijkstra's algorithm?

The time complexity of Dijkstra's algorithm depends on the data structure used to 
implement the priority queue. When implemented with a binary heap or Fibonacci heap, 
the time complexity is O((V + E) log V), where V is the number of vertices and E is the 
number of edges in the graph.

90. What is the difference between a breadth-first search (BFS) and a depth-first search 
(DFS)?

BFS and DFS are graph traversal algorithms with different exploration strategies. BFS 
explores all the vertices at the current depth level before moving to the next depth level, 
while DFS explores as far as possible along each branch before backtracking. BFS uses a 
queue data structure, while DFS uses a stack or recursion.

91. What is dynamic programming?

Dynamic programming is a problem-solving technique that solves complex problems by 
breaking them down into overlapping subproblems and solving each subproblem only 
once, storing the results in a table (memoization) for future use. It is particularly useful 



when the problem exhibits optimal substructure and overlapping subproblems. Dynamic 
programming can significantly improve the efficiency of recursive algorithms.

92. What is memoization in dynamic programming?

Memoization is a technique used in dynamic programming to store the results of 
expensive function calls and avoid redundant computations. It involves caching the 
computed values of subproblems in a lookup table or an array, allowing subsequent 
calls to retrieve the stored results instead of recomputing them. Memoization can greatly 
reduce the time complexity of recursive algorithms.

93. What is the time complexity of a recursive algorithm with memoization?

The time complexity of a recursive algorithm with memoization depends on the number 
of distinct subproblems encountered. If there are n subproblems, and the time 
complexity of solving each subproblem is O(1), the overall time complexity is O(n).

94. What is the difference between an array and a linked list?

An array is a contiguous block of memory that stores elements of the same type. 
Accessing elements in an array is fast and constant time (O(1)) because they can be 
accessed directly using their indices. However, inserting or deleting elements in the 
middle of an array requires shifting subsequent elements, resulting in a time complexity 
of O(n).

On the other hand, a linked list is a data structure where elements (nodes) are scattered 
in memory and connected through pointers. Insertion and deletion operations in a linked 
list can be done in constant time (O(1)) by adjusting pointers, but accessing elements 
requires traversing the list, resulting in a time complexity of O(n).

95. What is the difference between a stack and a queue?

A stack follows the Last-In-First-Out (LIFO) principle, allowing insertion and deletion only 
at one end (top). The last element inserted is the first one to be removed.

A queue follows the First-In-First-Out (FIFO) principle, allowing insertion at one end 
(rear) and deletion at the other end (front). The first element inserted is the first one to be
removed.

96. What is the difference between a hash table and a binary search tree?

A hash table uses a hash function to map keys to array indices and provides constant-
time average case complexity for insertion, deletion, and retrieval operations. However, 
hash tables do not naturally maintain order and may experience collisions, affecting 
performance.

A binary search tree (BST) maintains elements in a sorted order based on their keys. 
BSTs provide efficient searching, insertion, and deletion operations with a time 
complexity of O(log n) in balanced trees. However, the time complexity can degrade to 
O(n) in worst-case scenarios.



97. What is the difference between a graph and a tree?

A graph is a non-linear data structure consisting of a set of vertices connected by edges. 
It can have cycles and may or may not be connected.

A tree is a type of graph that is acyclic (no cycles) and connected. A tree has a root node 
and a hierarchical structure where each node has zero or more child nodes. There is a 
unique path between any two nodes in a tree.

98. What is the difference between a breadth-first search (BFS) and a depth-first search 
(DFS) in a graph?

BFS and DFS are graph traversal algorithms with different exploration strategies:

BFS is typically used to find the shortest path between two vertices or to visit all vertices 
in a connected component. DFS is useful for tasks such as finding cycles, topological 
sorting, and exploring paths in a graph.

99. What is the difference between a spanning tree and a minimum spanning tree?

A spanning tree of a graph is a subgraph that includes all the vertices of the graph while 
forming a tree structure without any cycles. It preserves the connectivity of the original 
graph.

A minimum spanning tree (MST) is a spanning tree with the minimum possible total 
edge weight. It connects all the vertices with the least overall cost. MSTs are useful in 
scenarios such as designing network infrastructure or connecting a set of locations with 
minimal expenses.

100. What is the difference between an algorithm and a data structure?

An algorithm is a step-by-step procedure or a set of rules for solving a problem or 
accomplishing a specific task. It defines a sequence of operations or computational 
steps to transform input data into desired output.

BFS explores all the vertices at the current depth level before moving to the next 
depth level. It uses a queue to store the vertices and visits them in the order of their 
discovery.
DFS explores as far as possible along each branch before backtracking. It uses a 
stack or recursion to store the vertices and visits them in a depth-first manner.


